Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting.

نویسندگان

  • S X Liu
  • J-T Kim
  • S Kim
چکیده

Surface modification of flat sheet ultrafiltration membranes, polyethersulfone (PES), was investigated to improve the hydrophilicity of the membrane surface thereby reducing adsorption of the proteins onto the membrane. Grafting of hydrophilic polymers onto UV/ozone-treated PES was used to improve the hydrophilicity of the commercial PES membranes. Hydrophilic polymers, that is, poly(vinyl alcohol) (PVA), polyethylene glycol (PEG), and chitosan, were employed to graft onto PES membrane surfaces because of their excellent hydrophilic property. The surfaces of modified PES membranes were characterized by contact angle measurement, FTIR, and AFM. The FTIR spectra indicated that PES membranes were successfully modified by grafting of the hydrophilic polymers. The modified PES membranes showed 20% to 50% reduction in contact angle measurements in comparison with those of the virgin PES membrane. The tapping mode AFM technique was employed to investigate the changes of surface topography, cross-section, and root mean square roughness of the modified PES membrane surfaces. The modified PES membranes showed elevated roughness (ranging from 7.0 to 25.7 nm) compared with that of the virgin PES membrane (2.1 nm). It is concluded that grafting of PVA, PEG, or chitosan onto UV/ozone-treated PES membranes increases hydrophilicity and lowers protein adsorption by 20% to 60% compared to the virgin PES membrane. Among the 3 hydrophilic polymers studied, PEG showed the most favorable result in terms of contact angle and protein adsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Polymer Surface Modification Via Interfacial Polymerization on Polymer–Protein Interaction

Membrane separation is an important processing technology used for separating food ingredients and fractionating value-added components from food processing byproducts. Long-term performance of polymeric membranes in food protein processing is impeded by the formation of fouled layers on the membrane surface as a result of protein adsorption onto the membrane surface. Surface modification of sy...

متن کامل

Molecular modeling of interfaces between cellulose crystals and surrounding molecules: Effects of caprolactone surface grafting

0014-3057/$ see front matter 2008 Elsevier Ltd doi:10.1016/j.eurpolymj.2008.08.029 * Corresponding author. Tel.: +4687908118; fax: E-mail address: [email protected] (L.A. Berglund). A technical problem in cellulosic nanocomposite materials is the weak interaction between hydrophilic cellulose and hydrophobic polymer matrices. One approach to solve this difficulty is to chemically graft monomers of t...

متن کامل

A Review on Grafting of Biofibers for Biocomposites

A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based...

متن کامل

Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...

متن کامل

Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

Environmentally responsive poly(N-isopropylacrylamide) brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of food science

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 2008